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Abstract

For laminar, steady flow in ducts, the current
definition of hydraulic diameter, D., does not accurately
depict the non-uniform wall shear stress distribution around
the perimeter of non-circular duct shapes. 1In this
investigation, a new hydraulic diameter, Da,:, was
empirically determined. It correlated friction factor data
for many non-circular shapes to within approximately 2.4 %
of the circular duct valve.

An experiment, using the AFIT 0Oil Flow Rig Set-up, was
run to determine the effect on transition Reynolds number,
Re.., and hydrodynamic entrance length, L*, of replacing D
with Da,.. Transition Reynolds number and L* were
determined, based on D. and Da,,, for a circular, square,
and concentric annular duct.

Transition Reynolds numbers, based on D., for the
square and concentric annular ducts were approximately
12.5 % lower than the circular duct Re... The Re.., based
on Dn,,, did not correlate well for the concentric annulus,

but did correlate for the square duct.

v
y
i
>

Hydrodynamic entrance lengths, based on Ds and Dw,.,
were experimentally determined for the circular and square
duct only. The square duct L*, and the analytic concentric

annular duct L*, based on D, did not correlate to the

X1




,.
AR
A

to the circular duct value.

Although the Re., and L* for the square and concentric

annular ducts did not correlate well when based on Da,:., the

‘ data obtained is still useful to the engineering community
: since it provides an addition data base for experimental L°,
3

and provides experimental data on Re.. for sguare and

concentric annular ducts.
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A REDEFINED HYDRAULIC DIAMETER FOR LAMINAR FLOW

I. Introduction

Background

For flow in circular ducts, where there is a uniform
wall shear stress around the perimeter and uniform distance
from the center to the surface, duct radius, or diameter,
is a logical choice for the characteristic dimension in
flow correlations. For non-circular ducts a characteristic
dimension, the hydraulic diameter (D.), has been defined as

2. . 4A/P where A is the duct cross-sectional area and P is
the duct perimeter. The hydraulic diameter is
unambiquously defined for any cross-sectional shape, and
for consistency is used in both turbulent and laminar duct
flows. Experimentation has verified that, for turbulent
flow, where the wall shearing stress is fairly uniform
around the perimeter, the hydraulic diameter is the
appropriate characteristic dimension for many non-circular
duct shapes (l1). For fully developed, laminar flow,
however, the wall shearing stress distribution along the
perimeter of non-circular ducts is not uniform and the
hydraulic diameter is, perhaps, not the best characteristic

dimension. For example, for a circular duct, CRe = 16.0,

o while for a triangular duct, CRe = 13.333, where Re is

~
_____ B o™ ™ N n T ol A.f\"\ »
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. defined as VD«./v. At present there is no characteristic

%&g dimension that correlates laminar flow data in non-circular

ducts.

Some current uses of hydraulic diameter as a

characteristic dimension are in transition Reynolds number
b and hydrodynamic entrance length calculations. Reynolds
number, which is a ratio of inertia to viscous forces, is
very much associated with the stability of laminar flows. ‘
4 Viscous forces tend to restore laminar flow after a
] disturbance, while inertia forces tend to amplify
disturbances,therefore, transition from laminar to r

turbulent flow might be characterized by a transition

R T o

Reynolds number, Re... For circular duct flow, the Re..,

(;' based on diameter and duct averaged velocity, is
approxiamately 2000 (2). This author has not found any
Re., data for non-circular ducts, and since the wall
shearing stress is not uniformly distributed around the
perimeter of non-circular ducts, one would speculate that
the Re.., based on hydraulic diameter, for these ducts
would be different from the circular duct value of 2000.

Another use of hydraulic diameter has been in
hydrodynamic entrance length (X) calculations. One of the
most common definitions of X is the duct length required to
achieve a duct centerline velocity 99% of the fully

developed value (3). These results are often given in the

T T TR S W WS SO WV W WY W W XK

R non-dimensional form, L*®* = (X/Dn)/Re. Several different

)
]
)
)
b
)
|
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e analytical solutions to the L* problem exist for circular \
o as well as non-circular duct shapes (l14). Based on :
hydraulic diameter, L* varies significantly for each duct
shape. Little, if any, experimental L°* data has been
reported.
Objectives :
This investigation had four objectives:
1. Empirically determine a new hydraulic diameter,
QDM;", that better represents the
mean center to surface distance for laminar
flow in non-circular ducts, and which ;
correlates C/Re data. :
‘?. 2. Experimentally determine the Re.. , based on :
¢ Dn,x, for a circular duct, square duct, and i
concentric annulus with an aspect ratio that E
simulates flow between infinite parallel )
plates. ;
3. Experimentally determine L°* for the above :
shapes, based on Dw,:. "
4. Examine the effect on Re.. and L* of f
replacing the traditional Ds with Da, ;
The first obJjective will be accomplished using P
friction factors (CRe), for fully developed duct flow, as -
.
the data base for the Da,: calculations, with an attempt to E
converge the data to the circular duct value.
gaﬁ The remaining objectives will be accomplished using
3




the Air Force Institute of Technology's instrumented oil

Qgﬁ flow rig set-up. Pressure and mass flow data will be taken

for the different duct shapes to determine Re.. and L°’.
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@ﬁ; II. Duct Theory

Circular Ducts

The circular duct is the most common duct shape in use
today. For constant-property, steady, fully-developed,

s laminar flow through circular ducts, as in Figure 1, the

equation of motion can be written as:

(u/x)[(3/3r)(r(du/3zx))] = dP/dx (1)
Since the pressure is independent of r, Equation (1) can
be integrated directly with respect to r to obtain the

velocity profile. Applying boundary conditions:

At r=20 axis of the tube
) du/dr = 0 velocity gradient is zero
(! At I = Xo duct wall
u =20 no slip at the wall
yields
u = (re?/4u)(-dP/dx) (1-(r?/re?)) (2)

It proves more convienient to express this velocity in
terms of a mean duct velocity, V, rather than the pressure

gradient. For incompressible flow, the mean velocity is

vV = ([/:di)/A

(ro?/8u) (-dP/dx) (3)

A5 T I A A

defined as:

resulting in,

<
I

thus,

2V(1l-(xr/re)?) (4)

[+
1}
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Entrance

f‘1 ro
- o o
r e - r
-’;x -— -—;._- —J——— - —— D

L= L"'!L—‘u —Jh—-
l Entrance I Fully
Region Developed

Figure 1. Flow in a Circular Duct

r:. The gradient of this velocity profile is used to evaluate
the shear stress at the wall.
Te = 4 (JQU/AX )rere (S)
Using Equation (4)
Te = ul2V(-2r/xre*) ] = -4Vu/Te (6)

Since V is constant for steady, fully-developed flow, 71 is
constant. The friction factor can now be evaluated. The
Fanning friction factor (C/) is defined as the ratio of

wall shearing stress to the dynamic head of the flow.

Ce = To/(PV¥/2) (7
thus,

Ci = (4Vu/re)/(PV2/2) = Bu/0Vr, (8)
e
LS

6
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For a circular duct, Re is defined as

Re = pVD/u
where D = 2ro.. Rewriting Equation (8)

Cs = 16/Re (9)
Data from Stanton and Pannell (6:199) and Senecal and

Rothfus (7:533) verifies this equation up to a Re of 2000.

Non-Circular Ducts.
Although a majority of ducts in use today are of

circular cross-section, many non-circular duct applications
exist and require further flow analysis. For constant
property, fully developed, laminar flow through a
non-circular duct, the equation of motion is:

d%u/dy? + d%us/3z* = (1/u)(3P/3x)
The friction forces are seen to be functions of the
cross-sectional dimensions in both y and z directions.
Traditionally, a single length dimension, the hydraulic
diameter (D.), has been used to characterize the
cross-section. Hydraulic diameter is related to the
hydraulic radius, R, which is the ratio of cross-sectional
area, A, to wetted perimeter, Per, by:

Dn = 4Ry = 4A/Per

Hydraulic diameter for a non-circular duct is intended to
represent the diameter of an equivalent circular duct which
has the same C/Re as the non-circular duct. Table I

illustrates D. for several non-circular shapes.
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TABLE I.
Five Ducts With the Same Hydraulic Diameter (5:77)
Crom wcion
Circular
Square
‘e
Equileteral trangie
/”-“\_
R wranS ] '/' \\n
18 r -
sctangy jl-bs |‘Ph-85/ 5/:
,’/'-‘\\\
I A\
infinite paralie! s | Dh=2S ,
plates [ ‘\ 7
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Turbulent flow through non-circular ducts, using D.
as the characteristic dimension, was investigated by
Shiller (8) and Nikuradse (9), who verified that D.
provided satisfactory results. For laminar flows, however,
the Shiller and Nikuradse data, as well as that of Koch and
Feind (10), showed limitations to the use of hydraulic
diameter. This data is shown in Figure 2 from Schlicting
(2:576). Here A is the Blasius, or Darcy, friction factor
where,

A = 64/Re = 4C,
for circular ducts. 1In Fiqure 2, A has been multiplied by
a constant, for each duct shape, in order to fit all the
data onto one graph. For laminar flow, the hashed lines
represent a circular duct. Note the difference in A

between circular and non-circular ducts based on D..
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Figure 2. Friction Factor for Several Ducts
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Exact solutions to the equations of motion, for many
non-circular ducts, based on D., ylield,

C/Re = C = constant
for each duct shape, instead of the desired circular duct
solution, C/Re = 16. Several values of C(Re are shown in

Table II (11).

TABLE II.

CRe for Non-Circular Ducts

DUCT _ SHAPE C = CqRe
SINE 12.630
" TRIANGLE 13.333
‘E‘. SQUARE 14.227
HEXAGON 15.054
RECTANGLE 2:1 15.548
SEMI-CIRCLE 15.600
RECTANGLE 4:1 18.233
RECTANGLE 8:1 20.585
INFINITE PARALLEL 24.000
PLATES

These values of C/Re represent exact solutions, based on

Dp, most having been verified by experimental data

(8,9,10).
P By examining the definition of hydraulic radius, an
Sy
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insight as to why these laminar flow values do not
correlate with the equivalent circular duct data can be
gained. The reciprocal of hydraulic radius is the wetted
perimeter per unit of flow cross-section and describes the
amount of wall area in contact with the moving £luid. The
hydraulic radius is a good index if the resistance to
momentum transfer is predominantly dependent on the amount
of wall surface area, as it is in turbulent flow. In
laminar flows this resistance to momentum transfer takes
place throughout the cross-sectional flow area and is not
primarily associated with the wall surfaces. Thus reliable
conversions from circular to non-circular shapes cannot be
expected.

Another explanation for poor correlation with laminar
flows is seen by examining the surface area per unit of
flow volume, As/Vol, for individual ducts. The friction .

factor is directly related to the amount of wall shear

stress and this stress is related to the amount of surface :
area it acts upon. For ducts with As/Vol different than R
that of a circular duct, the shearing stress is acting on a s

different amount of surface area, per unit volume, and a

different C, can be expected. For example, a rectangular f
duct with an aspect ratio of 8:1, has more surface area, ’
per unit volume, for the shearing stress to act upon than

does the circular duct with the same Dn, and hence a larger

Cs is expected.

11




Flow in the corners of non-circular ducts also
influences C/. Consider a square duct and a circular duct,
each with the same Dn. Each duct has approximately the
b same As/Vol ratio. 1In the corners of the square duct, the
velocity is low compared to V, and with this low velocity
b is low shearing stress. This low velocity, in essence,
reduces the effective flow area. Low effective flow area
produces a lower Cy for the square duct compared to the
circular duct.

g Since laminar flow C/Re values do not correlate well
j for non-circular ducts, it becomes desirable to have exact
f solutions for non-circular shapes, based on a new Da,:,

!

where the value of CRe for these ducts equals that of the

(;' circular duct. Individual CRe, as in Table II, would no

.onger be necessary.

e w

Exact C/(Re values vary non-linearly for rectangular
ducts, from the square duct value of 14.227, to the
infinite parallel plate duct value of 24.0, as illustrated
b in Figure 3 (l1). Since the corners of rectangular ducts
have the same influence on Cs, from duct to duct, the C(Re
variance can be directly attributed to the difference in

As/Vol. Once again, the values in Figure 3 are based on

Dn. As noted in Figure 3, a rectangular duct with an
aspect ratio of approximately 2.3 has a C/Re equa} to that
of a circular duct, and D. becomes an appropriate

dimension.
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Figure 3. Friction Coefficients for Rectangular Ducts
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I1I. Redefined Hydraulic Diameter

Approach

Currently, each non-circular duct has a unique exact
solution for C/Re, based on Dn. This author seeks a new
parameter, Da,1, that would produce a non-circular duct
value of C/Re equal to the circular duct value of 16. The
first step is to examine the C/Re data for several

non-circular duct shapes, where

Re =pVD./i

Table II and Fiqure 3 summarize C(Re, based on D., for many
of the most common non-circular shapes. An empirical
equation for Ds: will be derived that will correlate C(Re
data to the circular duct. To do this. first the data from
square, triangular, hexagonal, and semi-circular ducts are
examined, since these shapes are similiar, in that they are
fairly compact. Next the rectangular data from Figure 3 is
approximated, to within 0.05%, by the following equation:
CiRe = 24[1 - (1.3553/a) + (1.9467/0%) - (1.7012/a?)

+ (.9564/0*) - (.2537/¢%)) (3:199)

The rectangular duct will be examined first for o from 1.0

to 10., in increments of 0.25. Most manufactured
rectangular ducts are in this range, so small increments
are taken to fully evaluate these ducts. Aspect ratios of

25, 50, 100, and = were examined next. These ducts
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represent flow that is beginning to simulate infinite
parallel plate flow.

The hydraulic diameter describes the diameter of an
equivalent circular duct which has the same mean shear
stress as the non-circular duct. Since D, under-estimates
the correct diameter in some cases, such as sqguare and
triangular ducts, and over-estimates it in others, such as
infinite parallel plates and elongated rectangular ducts, a
new Dn, Du,,, is invisioned. Da: is determined using a
"modelling circle" diameter, D., plus a correction factor.
This "modelling circle" represents the area of "main flow"
in the duct. 1It, in essence, separates the corner areas
from the "main area™ in the duct. Table III illustrates
the modelling clrcles for several duct shapes. For fairly
compact shapes, such as square, triangular, and hexagonal
ducts, the modelling circle area is identically the D
area, and D, = Dn. For elongated ducts, such as infinite
parallel plates or rectangqular ducts, where the flow
extends out, the modelling cirle is an ellipse where the
elliptic aspect ratio is the same as that of the duct. For
simplicity, D. is the smaller length, a, for elliptical
modelling circles. Comparing the flow area of circles with
diameter Ds. and their associated perimeter to those of the
elliptical modelling circles, shows that the elliptical
modelling circles better represents the actual flow area,

and the perimeter upon which the mean shear stress may act.
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{ RN TABLE III.
I Modelling Circles for Several Duct Shapes
p 'r
s De = 1.000 s
4 Do = 1.000 S
S De = .57735 S
y Do = .57735 8§
>
A Do = 1.732 §
De = 1.732 8
R
(o
2b/2a = 1.3 De = .500 s
D = .611 S
S —f
2b/2a = 2 a — s Do = 1.000 S
17, T Do = 1.333 s
'_"_‘-*-T-‘fs .
Zb 2 = 4 4 D ‘l D. = 1-000 S
/2 . T --1 % b.=1.600s
. o= --k)-SL D. = 1.000 S
iy b/2a =@ Ao — T D. = 2.000 S
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This can be seen, for example, for the rectangular duct of
@ = 4:1, by comparing the sketches in Table I and Table
III. 1In determining a correction factor for D., the area
between the duct walls and the modelling circle, and its

associated perimeter, is utilized.

Results

For laminar flow in non-circular ducts:

Dn,s = 3.2(AE/PE)(Dn/D.) + D (10)
where
AE = area of the duct - area of the "modelling circle"
PE = perimeter of the duct + perimeter of the
"modelling circle®
Dn = hydraulic diameter, 4A/P
Da = smallest diameter of elliptic "modelling circle”

Figure 4 shows an example of AE and its associated
perimeter. Equation (10) is used for all ducts except
rectangular ones. An additional term is needed for
rectangular ducts to account for the changing D./D. ratio
and the aspect ratio, . For rectangular ducts:
Da,y = 3.2(AE/PE)(Dn/Da)[1 + ([4(Dn -Da)%/al}l + Da (11)

For example, using Figure 4 and Equation (1l1),

area of the duct = 38?2

area of the "modelling circle" = =m(.58)(1.58)

perimeter of the duct = 88

e A

.
.

.
[ ]
»
»

perimeter of "modelling circle"™ = 27[(1.5%* + .,5%2)/21]'%¢§
17
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Figure 4. AE for a Rectangular Duct

AE = .64485?
PE = 15.02S
aspect ratio = 3.0
Dn = 1.58
Da = 1.0s8
and,
Da,s = 1.4S8

Here, for an ellipse:
Area = rmrab
and the perimeter can be approximated by,
Perimeter 27 (a? + b?}/21®

Note that equation (11) reduces to equation (10) for the
limiting cases of the square duct (Ds. = D) and the
infinite parallel plate duct (a =),

Table IV and V present Dn,, and C.Re data, based on
Dn,i. Friction factors for all duct shapes investigated,
are within 2.4% of the circular duct value of 16.0.
Appendix A presents a breakdown of the Da: calculations

for each duct shape.
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TABLE IV.
Redefined Hydraulic Diameter, on,1

SHAPE CrRe (Dh) In Dm Jn,1 CSeRe (Dpn) Ag

SQUARE 14.227 1.000s8 1.0008 1.098s 15.62 -2.40

TRIANGLE 13.333 0.577s 0.5778 0.693s 15.94 -0.04
r-:._ HEXAGON 15.054 1.7328 1.7328 1.800S 15.64 -2.20

SEMI-CIR 15.600 0.611s8 0.5008 0.633s 16.15 0.94

INF.PAR.PL. 24.000 2.000S8 1.0008 1.345S 16.12 0.75%

16
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TABLE V.

-:\.“ -
W e c Th-
Rectanqular Duycts
1.00 14.230 1.000S 1.0985 15.620 -
1.25 14.382 1.1118 1.2395 16.039
1.50 14.715 1.2008 1.2945 15.863 -
1.75 15.127 1.2738 1.3288 15.786 -
2.00 15.557 1.3338 1.3525 15.770 -
2.25 15.978 1.3858 1.3685 15.783 -
2.50 16.377 1.4298 1.3798 15.810 -
2.75 16.749 1.467S 1.387S 15.843 -
3.00 17.095 1.5008 1.3938 15.877 -
.25 17.414 1.529S 1.3978 15.909 -
.50 17.710 1.556S 1.4008 15.940 -
.15 17.982 1.579S 1.4028 15.969 -
.00 18.234 1.6008 1.4048 15.995 -
.25 18.467 1.6198 1.404S 16.019
‘u- .50 18.684 1.636S 1.405S 16.040
L g .15 18.885 1.6523 1.4058 16.060

.00 19.072 1.6678
.25 19.246 1.680s
.50 19.409 1.6928
.15 19.561 1.704s
.00 19.705 1.714s
.25 19.839 1.724s8
.50 19.965 1.733s
.75 20.084 1.742s
.00 20.197 1.750s
.25 20.303 1.758s
.50 20.404 1.7658
.75 20.499 1.771s
.00 20.590 1.778s
.25 20.676 1.784s
.50 20.758 1.789s
.75 20.836 1.795s
.00 20.910 1.800s
.25 20.981 1.805s
.50 21.049 1.810s
.75 21.114 1.814s8
10.00 21.176 1.818s8
25.00 22.7170 1.923s

.4058 16.078
.4058 16.095
.4058 16.110
.404S 16.124
.404Ss 16.136
.4038 16.148
.403s 16.159
.402s 16.170
.402s 16.180
.401s 16.189
.401s 16.197
400s 16.206
16.214
.399s8 16.221
.399s 16.229
.3998 16.236
.398s 16.242
.398s 16.249
.397s 16.255
.397s 16.262
.397s 16.268
.3708 16.218

O‘OND@OO@OQ\IQQC\G\C\C\U‘U‘U‘U‘A“‘UUU
Ol H Il M iR NN S - - 0000000000000 0KHKHKHKHEOON
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. 50.00 23.370 1.9618 .358S 16.178
~ 100.00 23.680 1.980s .351S 16.154
@ 24.000 2.000s .343s 16.120
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IV. Experimentation

Apparatus
The AFIT 0il Flow Rig Set-Up, shown in Figure 5, was

used to determine Re.., L°*, and C, for a circular, square,
and concentric annular duct. O0il is pumped from the
reservoir, up to the duct entrance, down the duct, and
either into a weighing tank or back into the reservoir,
depending on the selector valve setting. A mercury
manometer beoard displays individual pressures for 10 static
pressure stations along the duct.

SAE 10W-10 o0il is the working fluid for this
experiment. To determine Re.., L*, and C,, the density (p)
and the viscosity (p) of the o0il are needed. The density
of the o0il is determined by,

Posi = Puz(specific gravity of oil)
The density of water is 62.4 lbm/ft?, and the specific
gravity of oil is the ratio of the mass of a given volume
of oil to that of an equal volume of water. Six
measurements were taken with an average specific gravity,
for this oil, of .863 (see Appendix B.). Thus, the density
of the o0il is 53.85 lbm/ft?.

The viscosity of the oil can be determined by using
the Hagen-Poiseuille law (20:114), or by use of a

viscometer. Lieutenant J. C. Ghiglieri (29), determined

v to be:

-
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100 F - 10.18 centistokes

210 F - 2.53 centistokes
Using a Viscosity-Temperature chart, like that shown in
Figure 6, these values can be linearized and u at other
temperatures extrapolated. Table VI shows some
extrapolated values. These values were verified from the
circular duct data using the Hagen-Poiseuille law,

dP/dx = (128 uQ)/( 7 D*)

where,

Circular Duct

Figure 7 shows a diagram of the circular duct that was
used for this experiment. The duct is 21 feet long, with
an inside diameter of 0.8125 inches. Ten static pressure
taps are mounted along the duct with the first tap 8 inches
from the entrance, and the remaining 9 taps located every 2
feet downstream. The cross-sectional flow area is 0.5185

square inches.

Square Duct

The square duct, shown in Figure 8, is 21 feet long,
with an inside width of 0.75 inches. Pressure taps are
mounted identical to those of the circular duct. The
cross-sectional flow area for this duct is 0.5625 square

inches.
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TABLE VI.

& J O ) g

AFIT SAE 10W10 0il Viscosity

Temp.-F YV - Centistokes
70 18.80
75 17.50
80 15.75
85 13.92
90 12.86
95 12.07

100 10.18
105 9.50
110 9.00
115 8.20
120 7.50
125 6.90

25

- (lbf-sec

3.39 X

3.15

2.84

2.51

2.32

2.18

1.83

1.71

1.62

1.48

1.35

1.24
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Figure 7. Clircular Duct Diagram
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Figure 8. Square Duct Dlagram
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Figure 9. Concentric Annulus Diagram

Concentric Annulus

The concentric annulus, shown in Figure 9, consists of
two ducts, one mounted within the other, with r./r; =
.8435. The center duct is blocked at both ends to allow
flow between the two ducts only. The concentric annulus
was designed to simulate infinite parallel plates flow,
which represents the upper bound of CRe. Figure 10 shows
that infinite parallel plates can be simulated with
concentric annuli having r./r: greater than approximately
0.7 (3:286). This duct is 7.5 feet long with a flow height
of .1225 inches. This results in a cross-sectional flow
area of .555 square inches. Six pressure taps are mounted
on the duct with the first three taps located 3.0, 5.3, and
8.0 inches, respectively, downstream of the entrance. the

remaining three taps are located every two feet downstream

from tap number 3. Since the entrance region developes
27
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Figure 10. Friction Factors for Concentric Annuli

quickly for an infinite parallel plate duct, the first
three pressure taps are located as close to the entrance as

possible.

Procedure

The AFIT 0il Flow Rig allows measurement of static
pressure drop along a duct, and the average mass flow rate
through that duct. With these measurements, and the oil
properties, C:.Re, Re..,, and L*' can be determined. The

static pressure for each measuring station along the duct
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is presented on the mercury manometer board. The weighing
tank is used to measure the mass flow of oll for a specific
time period. By dividing the total mass weighed by the
elapsed time, a mass flow rate can be determined.

m = lbm oil/time

For friction factor measurements, steady, laminar flow
is established in the duct, and static pressure is recorded
for each of the 10 stations, from the manometer board.
dP/dx is determined from the fully developed (linear)
portion of the pressure curve (see Figure 1l1). The average
velocity (V), is determined from mass flow rate data where,

V = m/pA
Friction factors are then determined from,
4C, = (~-dP/dx) (2gDh/pPV?)

Transition from laminar to turbulent flow was
determined visually at the duct exit, with the aid of a
strobotac. Once laminar flow is established in the duct,
the flow velocity was increased until turbulent eddies
become noticable at the duct exit. The strobotac is a
significant aid for this, especially with the concentric
annular duct, where exit flow interaction occurs shortly
past the duct exit. Once this transition point is located,
the selector valve is turned to allow o0il to flow into the
weighing tank. The mass flow rate is then determined, and

Re.. calculated as,

Res,. = mD/A Y

AW k. ARTAI
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The hydrodynamic entrance length was determined
o
:ﬁ? graphically from the pressure vs. position plots for each

> e e o v -

duct. 1In fully developed, laminar flow, dP/dx is constant.
In the hydrodynamic entrance region, where the velocity
profile is still developing, the pressure drop is
increasingly greater toward the entrance and thus,
non-linear. Where the non-linear portion of the pressure
drop curve becomes linear defines X (see Figure 11), and

f knowing the duct Ds, or Da,:,, and Re, L* can be determined.

WP W,

“»

P -in. Hg.

dP/dx = C

o] IR Y

X -in.

Figure 11. Pressure Drop for Fully Developed, Laminar Flow
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V. Results and Discussion

Friction Factor

Friction factors for each duct can be determined from
the pressure drop in the fully developed, laminar flow
region. Friction factor data was used to verify exact
solutions, based on Da. Friction factors were determined
from,

4C, = (-dP/dx) (2gD/PV?)

where D is Dn or Dw,., depending on the application.

Friction factor data from the circular, square, and
concentric annular ducts are compared to the exact
solutions, based on D, in Figures 11, 12, and 13,
respectively. Pressure and mass flow data are presented in
Appendix C, for each duct. The experimental C('s agree
very well with the exact solutions for all three ducts.
This is no surprise, since experimental C, data that
verifies the exact solutions is abundant in the literature.
More importantly, however, this data provides a high degree
of confidence in the data taking and reduction techniques,
which carries over to the Re.. and L* investigations.
Since the C, values, based on D., match the analytic exact
solutions, by definition, C:,, based on D.,, for the square
and concentric annular duct will equal the circular duct
value (within the Da.. limitations discussed in section

III).
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Transition Reynolds Number

Transition from laminar to turbulent flow can be
precicted, or correlated, by a transition Reynolds number,
Re.w. The value for Re:.. for circular ducts is
approximately 2300. This is only under normal conditions,
however. 1If disturbances in the duct entrance region, as
well as the approach to it, are minimized, Re.. can be
increased to significantly higher values, the upper limit
of which has not been established. V.W. Ekman, for
example, reached a Re.. of 40,000 with an exceptionally
disturbance free entrance (15). The lower bound is
approximately 2000, below which laminar flow is maintained,
even with very strong disturbances present (2:433)

This author has found no data on Re.. for non-circular
ducts. If the Re.., based on D., is, in fact, dissimilar
for different duct shapes, a desirable trait of Da,, would
be to correlate the Re.. for all duct shapes to the
circular duct value of 2000.

The three ducts each have abrupt entrances which
induce a large disturbance at the entrance. With such a
disturbance, transition should take place at the minimum
Res, for each duct. For example, historical data indicates
that this will occur at Re,, = 2000 for a circular duct.
The abrupt entrance should eliminate the Re.. dependence on

duct roughness.
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Transition Reynolds number, based on Da.., is
! ga} defined as:
N Resw,s = ( PVDa/ i ) (Dwn,:/Dn)
Transition Reynolds number were first calculated based on
Ds to compare to the circular duct Re.. This was done
because this author found no data on Re.. for non-circular
ducts. The Da,» correction was then applied to try to
correlate the data to the circular duct value. For these
. calculations, u was taken from Table VI for all three
ducts. This was done after the extrapolated values from
Table VI were verified from the circular duct data, using
the Hagen-Poiseuille law (see Appendix D).
Ten to 15 data runs at transition were made for each
(;t of the three ducts, with the average Re:.., based on both D
and Da,;, shown in Table VII. 1Individual Re.. values can
be found in Appendix C. The circular duct Re.. was 2028,
which matches the historical value extremely well. The
square and concentric annular ducts had Re..s, based on D,
approximately 12.5% below the circular duct Re... What is
interesting to note here is that the square and concentric
annular ducts, each have similiar Re., even though they
are significantly different duct shapes. Recall, these two
ducts were chosen because they represented two extremes
when considering C/Re, based on Dnu. The new hydraulic

diameter appears to work well correlating the sgquare duct
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Retr
concentric annular duct,
circular duct value.

on Dw,

A
.r

TABLE VII

Transition Reynolds Numbers

Duct Rey - Dy
Circle 2028
Square 1750
Concentric 1733
Annulus

to that of the circular duct.

remains the best choice.
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This data indicates that Re..,
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Hydrodynamic Entrance Length

Hydrodynamic entrance length is defined as the duct
length required to achieve a duct centerline velocity 99%
of the fully developed value. The non-dimensional form is

L* = (X/D)/Re
where D is elther Dn, or Du,, depending on the
application. Hydrodynamic entrance length is important in
that it represents a position where fully developed flow
can be assumed. For a circular duct, Liu (16) calculated
L* = .0541, Heaton (17) predicted L* = .0575, and Langhaar
(18) calculated L* = .058. For equilateral triangular
ducts, Shah (19) reported L* = .0398. Table VIII and Table
IX present analytic L* for rectangular and concentric
annular ducts, respectively. From these data it is easily
seen that L* varies considerably from duct shape to shape.
In fact, as Table VIII and Table IX show, authors often
disagree on L* for a particular duct geometry. Data in
Table VIII and Table IX represent analytic results.
Little experimental data exists to verify the most accurate
analytic method. This demonstrates the need for a
parameter such as D1 Wwhich can correlate data for
different duct shapes to the circular duct value.

For each of the three ducts, 10 to 15 laminar flow
data runs were made, at various Re, to determine L* (see

Appendix E).
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TABLE VIII.
Rectangular Duct L* for Fully Developed Laminar Flow
L*
Wiginton Fleming
l/a Dalton Sparrow Han
(21) (22) (23)
1 0.090 - 0.0752
0.750 - - 0.0735
0.500 0.085 0.095 0.0660 :
0.250 0.075 - 0.0427
0.200 0.080 0.080 - :
0.125 - - 0.0227 3
Ko
9 0 - - 0.0099
‘4
-
»
3
.
]
o,
&
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TABLE IX.

Concentric Annular Duct

L* for Fully Developed Laminar Flow

L*
r:/r: Liu Manohar Roy Heaton Coney Sparrow
(16) _(25) (26) (17) (27) (28)
0 .0541 - - .0575 - -
0.001 - - - .0296 - .0375
0.01 - - - - - .0303
0.02 - - - .0206 - -
0.05 .0206 - - .0172 .0329 .0241
0.10 .0175 .0164 .0180 .0146 .0253 .0210
0.20 - - .0158 - .0214 .0171
0.25 - - - .0118 .0204 -
0.30 - .0122 .0140 - .0194 -
0.40 - - .0128 - .0178 0131
0.50 .0116 .0110 .0121 0103 .0168 -
0.60 - - .0114 - .01l61 -
0.70 - .0103 - - .0156 -
0.75 .0109 - - - .0152 -
0.80 - - .0113 _ .0150 .0118
1.00 .01o08 - - .0099 .0147 -
40
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. TABLE X

Experimental Hydrodynamic Entrance Length

Duct L - Dy L* - Daa

Circle .0574 .0574

Square .0917 .0758

ey

Concentric - -
Annulus (.011 - Anal.) (.0163 - Anal.)

The experimental L* values, based on D. and Da,., are
shown in Table X. The hydrodynamic entrance length for the
circular and square ducts were easily determined from plots
like those shown in Figures 15 and 16, respectively. The
concentric annular duct, however, posed scme problems. By

: examining Figure 17, it is seen that the pressure drop
stays constant, for the concentric annulur duct, from
station 1 to 6, even at high Re. A hydrodynamic developing
region is indeterminable from the data, thus making it
impossible to graphically determine L*. By examining the
analytic L* data from Table IX, a possible explanation is
found. For r./r. = .84, L* is approximately .01ll. For a
Re of 1700, just before transition, X, for this duct, is
approximately 4.6 inches. Recall the first two pressure
taps were located at 3.0 and 5.3 inches downstream of the
entrance. The flow is fully developed before it reaches
the second pressure tap! To graphically determine L°*, with

only the first pressure tap within the hydrodynamic

&l
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entrance region, and close to the end, at that, is

Q; R
P
A

virtually impossible. The first three pressure taps were

located as close to the entrance as physically possible, so

a L* cannot be graphically determined for this particular
duct.

q The hydrodynamic entrance length, based on Ds, for the

circular duct was 0.0574 which indicates that Heaton (17) j

‘ and Langhaar (18) have good analytic techniques in i
predicting L*. The square duct had a L* of 0.0917. This b

value indicates that Wiginton and Dalton (21) have the best

. analytic technique for determining L* for square ducts.
Using Da,» as the characteristic dimension instead of

Da, does not correlate the data to the circular duct wvalue.

:* The correlation trend, however, is favorable. The square

duct L* is reduced toward the circular duct value, while
the concentric annular duct L* is increased.

Since the correlation of L*, based on Dn,., produced
unsatisfactory results, perhaps a different approach to the
L* problem is needed. Consider flow through a circular
duct as shown in Figure 18. Here the boundary layer
growth, 6 , is generally described as,

6§ = C(vt)® (2:83) (10)
where C is a function of the pressure gradient, dP/dx, and
the transverse velocity, v. We will let time, t, be equal
to x/V, for this problem. (It should be noted that V is

not the actual velocity that the boundary sees from
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Figure 18. Boundary Layer Growth in the Entrance Region

the entrance to position X. The velocity actually varies,
non-linearly, from V, at the entrance, to 2V, at the
centerline, for a circular duct, but we are using V here
for convenience and to obtain "ballpark" expressions for
L*.) The hydrodynamic entrance length, X, becomes
approximately the position where the boundary layer meets
the duct centerline, 6 = D/2. Equation (10) becomes,

D/2 = C(vX/V)-?
which can be rewritten,

X/D = (VD/v) (1/4C?) (11)

where X oc D2.
L* = (X/D)/Re = 1/4C? (12)

For the circular duct, L* = .0574, and C is approximately

2.1.
Now let us keep C constant at 2.1, and examine L* for
non-circular ducts, where & becomes the average distance a

disturbance must travel to reach the duct centerline. Let

46




Figure 19. A Square Duct

us examine a square duct, shown in Figure 19, for instance,
where, from the corners, a disturbance must travel
(2-®)(Dn/2) to reach the centerline. For non-circular
ducts, X is proportional to D«?, so,

L* = (2)(.0574) = .1148
This would be the predicted L* if all the disturbances in a
square duct, travelled (2:-°)(Dw/2)) to the center.
Obviously this is not the case. Those in the corners
travel (2:3)(Dn/2), but those on the sides only travel
(Dn/2) to the centerline. So, perhaps, the average
distance a disturbance travels in a square duct is
somewhere between these two values, say at (1.5):3(Dn/2),
for instance. If this is the case,

L* = (1.5)(.0574) = .0861
This L* is very close to our experimental value, L* =
.0917! Likewise, for an infinite parallel plate duct, the
average disturbance travel distance is .5(Ds/2), so,

L* = .01435
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This also is quite close to the analytically predicted L*
'Ol for the infinite parallel plate duct!
So, perhaps, a better way to correlate L* data would
be to scale the constant, C, with a new hydraulic diameter
that estimates the average boundary layer growth to the

centerline of non-circular ducts.
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VvI. Conclusions and Recommendations

Conclusions

In this investigation, a new hydraulic diameter, Da,:,

that better represented the mean center to surface distance

for laminar flow in non-circular ducts was empirically

determined. Experimentation was performed to examine the

effect on Re. and L* of replacing the traditional
hydraulic diameter, Dn, with Ds,y. The experiment was
performed using a circular duct, square duct, and
concentric annular duct that simulated flow between
infinite parallel plates.

The new hydraulic diameter equation correlated C«(Re

data to the circular duct value for many non-circular duct

shapes. All the shapes examined correlate within 2.4

percent of the circular duct value, with most within 1.5

percent.

Experimental Re., were obtained for the circular, square,

and concentric annular ducts. The circular duct Re..,
based on D., was very close to 2000 with the square and
concentric annulus Re,, approximately 12.5 percent lower
than this value. Square duct Re.., based on Dw,,
correlated very close to the circular duct, but the
concentric annulus Re.. did not. Concentric annulus Re..

actually diverged from the circular duct Re... Based on

this data, it appears that Ds,., which correlates C(Re data
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very well, is not a good characteristic dimension for Resr.
Perhaps an entirely different hydraulic diameter is needed
if Re. is to be correlated to the circular duct value.

Hydrodynamic entrance lengths were determined for only
the circular and square ducts. The concentric annular duct
flow became fully developed before the second static
pressure tap, making accurate prediction of L* almost
impossible. The analytic L* value for the concentric
annulus was thus used for Da.,:. correlations. Hydrodynamic
entrance lenghts, based on D.,., did not correlate well to
the circular duct value. The correlation d4id, however,
display the correct trend toward the circular duct value,
and, perhaps, multiplication of D, by some constant might
bring the L* values in line.

The new hydraulic diameter is quite accurate in
correlating C/Re data, but cannot be relied upon to
correlate Re., and L* data. Transition Reynolds numbers,
based on Dw, were determined for the ducts, and will be
useful, since no data for non-circular duct, Re.., has been
reported. Likewise, experimental circular and square duct f
L* values, based on D, will add to the limited data base

available.

Recommendations
The new hydraulic diameter did not correlate Re.. and

L* data. Separate hydraulic diameters are needed to

P T e Y B P W, PP I B W W W

correlate both Re.. and L’ data. The L* correlation
50
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appears to require only a multiplier applied to the Dn,
AA definition.
Instead of using Da,, directly in the L* correlation,
perhaps determining a Da,, that correlated the constant, C,
in the boundary layer growth equation (Equation (10)),would
yeild better results, and should be investigated further.
Pressure gages, located close to the static pressure
taps, should be installed, instead of relying on the
10-foot pressure lines that currently lead to the manometer
board. This would provide better response indications to
the pressure fluctuations which indicate the onset of
transition. In addition, a static pressure tap should be
| added to each duct at the exit. This would aid in the
<ﬂ¥ detection of flow transition.
| Static pressure taps should be installed very close to
‘ the entrance of the concentric annular duct to help in the
L* determination. This will require a major material
overhaul.

Unusual duct shapes, such as triangular, hexagonal, or

semi-circular, should be used in the investigation of C.Re,

Re.,, and L*, to increase the experimental data base used

£

in the Ds,, correlations. It would be interesting to see
where the data for these ducts fall, compared to that of

the square and concentric annulus.
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Appendix A.

New Hydraulic Diameter Calculations

Notation:

A = Duct area

P = Duct perimeter

Ac = Area of the modelling circle

Pc = Perimeter of the modelling circle

Ae = A - AC

Pe P + Pc

W = Width of infinite parallel plates (approaches infinity)

TABLE XI.
L. Compact Duct Hydraulic Diameters
* Shape A B Ac Bc  Ae  Pe Ae/Pe Dui Do
Circle .788% 3.148 .78S?* 3.14S .00S? 6.285 .000Ss 1.00s8 1.00s
Square 1.0S? 4.00s .785? 3.145 .21S8% 7.14S .0318 1.10S 1.00s
Triang .43S% 3.00S .26S8* 1.81S .17S? 4.81S .036S .693S .577s
Hexag 2.6S% 6.00S 2.4S? 5.44s5 ,245% 11.4S .021s 1.808 1.73s
Semi- .40S8% 2.57S8 .,26S% 1.80S .14S% 4.37S .033S .6335 .611s
Circle
Infinite A = WS P = 2W + 28
Parallel
Plates Ac = .79WS Pc = 2W
Ae = ,21WS Pe = 4W + 2S Ae/Pe = ,21WS/(4W+28)
As W goes to infinity, Ae/Pe reduces to .05365S
Dn,y = 1.34S Da = 28
52
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TABLE XII.
PN
b Rectangular Hydraulic Diameters
a A B Ac Pc  Ae Pe Ae/Pe Dy, Du

1.00 1.00s* 4.0S8S 0.79s* 3.0S 0.21¢? 7.08 .031S8 1.10s 1.00s
1.25 1.255* 4.5S 0.98s* 3.4S 0.27s2 7.9S .034S 1.245 1.11s
1.50 1.50s2 5.08 1.18s* 3.95 0.3282 8.9S5 .036S 1.29s 1.20s8
1.7 1.75S* 5.58 1.37s* 4.3S 0.38s?2 9.85 .038S 1.335 1.27s
2.00 2.00s* 6.0S 1.57s* 4.8S 0.43s? 10.8S .040s 1.35s 1.338
2.25 2.25S* 6.55 1.77s* 5.3S 0.48s? 11.8S .041s 1.37s 1.38s
2.50 2.508* 7.0S 1.968* 5.7S 0.54S8* 12.7S .042S 1.38S 1.43S
2.75 2.758* 7.5S 2.16S* 6.2S 0.59S8% 13.7S .043Ss 1.39S 1.47s
3.00 3.00S* 8.0S 2.36S* 6.7S 0.64S? 14.7S .044S 1.395 1.50S
3.25 3.25s* 8.5S8 2.558* 7.2S 0.70S? 15.7S .044S 1.40S 1.53S
3.50 3.508* 9.0S 2.758* 7.7S 0.75S%* 16.7S .045S 1.40S 1.56S
3.7 3.758* 9.5S 2.95s* 8.2S 0.80S? 17.7S .045S 1.40S 1.58sS
4.00 4.0082 10.0S 3.14S* 8.78 0.865* 18.7S .046S 1.40S8 1.60S
4.25 4.25S? 10.5S 3.34S* 9.2S5 0.915? 19.7S .046S 1.40s 1.62s
4.50 4.50S? 11.0S 3.53S' 9.7S 0.97S?* 20.7S .047S 1.40S l1.64s8
4.75 4.75S? 11.5S 3.73S* 10.2S 1.028* 21.7S .047S 1.41s 1.65sS
5.00 5.008? 12.0S 3.93s* 10.7S 1.07s8* 22.7S .047S 1.41S 1.67s
5.25 5.25S* 12.5S 4.12S* 11.2S 1.13S* 23.7S .048S 1.40S 1.68s
5.50 5.50S?* 13.0S 4.32S" 11.6S 1.18S* 24.6S .048S 1.40S 1.698
. 5.75 5.758?* 13.5S 4.528* 12.18 1.23S* 25.6S .048S 1.40s 1.70S
(;‘ 6.00 6.008S2% 14.08 4.71S* 12.68 1.298* 26.6S .048S 1.40S 1.718
) 6.25 6.258S % 14.5S 4.91S® 13.18 1.34S* 27.6S .049S 1.40S 1.72s
6.50 6.508* 15.0S 5.11S* 13.6S 1.39S* 28.6S .049s 1.40s 1.738
6.75 6.75S* 15.55 5.30S* 14.0S 1.45S* 29.5S .049S 1.40S 1.74s
7.00 7.008* 16.0S 5.50S* 14.5S 1.50S* 30.5S .049S 1.40S 1.75S8
7.25 7.255* 16.58 5.69S* 15.0S 1.56S* 31.5S .049S 1.40S 1.76S
7.50 7.508* 17.0S 5.89S? 15.55 1.61s* 32.5S .050S 1.40S 1.76S
7.75 7.75S? 17.5S 6.09S* 15.95 1.66S* 33.4S .050S 1.40Ss 1.77s
8.00 8.00S?* 18.0S 6.28S* 16.4S 1.725* 34.4S .050S 1.40s 1.78S
8.25 8.255? 18.5S 6.48S* 16.8S5 1.77S* 35.3s .050S 1.40S 1.78s
8.50 8.50S? 19.0S €.68S* 17.3s 1.82S* 36.3S .050S 1.40S 1.79S
8.75 8.75S? 19.5S 6.87s” 17.8S 1.88S? 37.3S .050S 1.40S 1.79s
9.00 9.00S? 20.08 7.07s? 18.2S 1.93S* 38.2S .051S 1.40S 1.80S
9.25 9.25S7? 20.5S 7.26S? 18.7S 1.99S? 39.2S .051S 1.40S 1.80sS
9.50 9.50S* 21.0S 7.46S* 19.1S 2.04S* 40.1S .051S 1.40S 1.81s
9.75 9.758* 21.5S 7.66S* 19.6S 2.09S? 41.1S .051Ss 1.40S 1.81s
10.00 10.00S* 22.0S 7.85S* 20.0S 2.15S* 42.0S .051S 1.40s 1.82s
25.00 25.00S? 52.0S 9.64S* 50.0S 5.375%102.0S .053Ss 1.37s 1.92s
50.00 50.00S2102.0S 39.387100.0S 10.75%202.0S .053S 1.36S 1.96S
100.0 100.05%202.0S 78.5S" 200.0S 21.55?402.0S .053S 1.35S 1.98S

.
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e Appendix B.

Specific Gravity Measurements

TABLE XIII.

AFIT SAE 10W1l0 0il Specific Gravity Measurements

Measurement Water (grams) 0il (grams) Sp. Gr.
1l 198.3 168.3 .849
2 377.0 325.6 .864
3 432.0 373.0 .8635
s
‘e 4 482.1 417.0 .8652
5 482.8 423.0 .876
6 541.2 466 .4 .862
] AVERAGE .863
A
_-:"-'
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Data Reduction

-

TABLE XIV.
Data for Circular Duct, Laminar Flow

Run Number

1 2 3 4 5 6
~ P, - in. Hg 3.20 2.77  2.29 1.92 2.14 2.24
‘ P, 2.83 2.49 2.06 1.78 1.92 2.00
P, 2.53 2.20 1.83 1.60 1.72 1.78
P. 2.25 1.95 1.64 1.45 1.50 1.55
o Pe 1.97 1.71 1.45 1.25 1.35 1.39
- Pe 1.78 1.58 1.35 1.19 1.28 1.29
P, 1.48 1.32 1.16 1.01 1.09 1.10
Pe 1.28 1.16 1.02 0.97 0.98 0.99
P, 1.02 0.92 0.83 0.78 0.80 0.80
Pio 0.76 ©0.74 0.70 0.69 0.70 0.70
‘ Temp - F 81.0 83.0 85.0 87.5 92.0 93.0
: m - lbm/sec 0.84 0.74 0.61 0.49 0.61 0.65
V - ft/sec 4.33 3.82 3.16 2.53 3.15 3.35
c. .0366 .0380 .0440 .0560 .0405 .0365
RE 1770 1636 1426 1132 1574 1698
A
55

S TG TN RN SN N I I SN 0 I ST S O N ST T I 8 B N N I A WA E AT



&

TABLE XV.
Data for Circular Duct, Transition Flow
Data Set 1
Run Number
1 2 3 4 5 6
P. - in. Hg 3.20 2.89 2.90 2.80 2.51 2.30
P2 2.90 2.60 2.61 2.50 2.23 2.04
Ps 2.51 2.21 2.29 2.22 2.00 1.81
P. 2.22 2.02 2.02 1.96 1.78 1.60
Ps 1.91 1.75 1.73 1.73 1.56 1.40
Ps 1.70 1.60 l1.61 1.55 1.40 1.30
P> 1.42 1.32 1.34 1.30 1.10 1.11
. Ps 1.28 1.19 1.18 1.15 1.03 1.01
(! Ps 1.00 0.91 0.93 0.92 0.86 0.83
Pio 0.80 0.79 0.79 0.74 0.72 0.71
Temp - F 84.8 86.17 88.0 90.0 92.1 94.8

m - lbm/sec 0.88 0.82 0.81 0.80 0.79 0.74
V - ft/sec 4.51 4.23 4.15 4.13 4.05 3.83
Cy .0316 .0330 .0339 .0324 .0307 .0295

RE 2023 1958 1962 2014 2027 1976

2
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TABLE XVI.

Data for Circular Duct, Transition Flow
Data Set 2
Run Number

1 2 3 4 5 6

P, - in. Hg
P:
Ps
P.
Ps
Pe
P,
Ps
4 P

Pio

Temp - F

m - lbm/sec
vV - ft/sec
C

RE

%3

S0 IR A PO SN

2.41 2.32 2.05 1.91 1.85 1.39

1.02 1.00 0.90 0.83 0.80 0.66
5.26 5.16 4.62 4.28 4.13 3.40
.0321 .0323 .0322 .0312 .0316 .0340

2149 2183 2098 2056 2038 1858
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TABLE XVII.

Data for Square Duct, Laminar Flow
Data Set 1

Run Number

P, - in. Hg 2.42 1. 2.73

P. 2.
Ps
P. 1.
Ps
Pe
P, 1.
Ps

‘e

N Ps 0.81 0.73 0.85 0.76 0.

Pio 0.

Temp - F 87.0

m - lbm/sec 0.66

V - £t/sec 3.11 2.

C. .0441 .0378 .0343 .0412

RE 1338 1281 1453 1410

k)
S

i

S8

TN
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TABLE XVIII.

Data for Square Duct, Laminaz Flow

\
% Data Set 2
i Run Number
\ 1 2 3
X P, -in. Hg 1.71 1.77 3.50
g P: 1.55 1.60 3.12
Ps 1.38 1.41 2.69 |
X
t P 1.31  1.30 2.39
i Ps 1.13 1.13 2.04
Ps 1.09 1.08 1.81
: P7 0 Y 9 2 0 Y 90 1 . 50
]
S Ps 0.86 0.87 1.30
\ (; Ps 0.74 0.73 1.04
b
; Pio 0.62 0.62 0.72
:
b
l Temp - F 100. 100. 78.0 ’
’ m - lbm/sec 0.56 0.57 0.89
Vv - ft/sec 2.66 2.71 4.23
Cs .0373 .0360 .0389
; RE 1522 1549 1493
!
4
4
)
. 1
|
1
= [
N
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| P, -

P2
Pa
Pa
Ps
Ps
P
Ps
o

Ps

Pio

vV -

Cs

RE

)
-.tl

‘‘‘‘‘‘‘‘‘

in.

Temp - F

0 3a' B2 tat ot B Ba° S2° 2’ Au" 2h"

TABLE XIX.

Data for Square Duct,

Transition Flow

m - lbm/sec

ft/sec

Data Set 1

Run Number
1 2 3 4 5 6
Hg 3.00 3.00 3.20 3.00 2.90 2.73
2.71 2.67 2.89 2.65 2.60 2.45
2.32 2.31 2.50 2.30 2.25 2.11
2.05 2.11 2.21 2.08 2.02 1.90
1.75 1.75 1.88 1.72 1.68 1.61
1.59 1.58 1.64 1.55 1.52 1.41
1.28 1.30 1.40 1.30 1.28 1.20
1.13 1.14 1.20 1.14 1.12 1.08
0.91 0.93 0.95 0.93 0.91 0.88
0.77 0.70 0.68 0.67 0.70 0.60
90.5 89.0 84.0 86.8 88.0 92.7
0.83 0.84 0.84 0.83 0.82 0.80
3.96 3.99 3.99 3.95 3.90 3.80
.0286 .0337 .0397 .0356 .0336 .0325
17917 1772 1622 1691 1702 1773
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TABLE XX.

Data for Square Duct, Transition Flow
Data Set 2

Lol A LB 2

Run Number

1 2 3 4 5 6
| P. - in. Hg 4.16 3.31 2.94 2.49 2.08 2.16
: P, 3.70  2.95 2.63 2.24 1.87 1.94
P, 3.25  2.60 2.23 1.97 1.63 1.72
P. 2.88 2.30 2.04 1.77 1.50 1.58
Ps 2.40  1.90 1.72 1.49 1.25 1.31
_ Ps 2.19  1.72 1.56 1.33 1.18 1.20
: P, 1.70 1.45 1.28 1.14 1.00 1.05
V Ps 1.47 1.21 1.13 1.02 0.91 0.91
(o Ps 1.13  0.98 0.90 0.85 0.76 0.78
Pio 0.80 0.70 0.65 0.65 0.62 0.65

:
' Temp - F 80.0 86.0 90.0 95.0 100. 100.

m - lbm/sec 1.02 0.90 0.83 0.76 0.66 0.69

vV - ft/sec 4.85 4.28 3.95 3.61 3.14 3.28 !

C .0359 .0361 .0356 .0337 .0340 .0327

; RE 1786 1811 1779 1734 1794 1875
4 .

=

.-:’-
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Data for Concentric Annular Duct,

TABLE XXI.

Data Set 1

Run Number

Laminar Flow

1 _ 2 3 4 5 6
P, - in. Hg 28.58 30.24 19.48 23.18 20.94 24.70
P2 27.80 29.41 19.00 22.60 20.44 24.09
P) 26.61 28.18 18.32 21.80 19.75 23.40
Pa 19.23 20.26 13.11 15.50 14.15 16.60
Ps 11.12 11.50 8.30 8.30 7.99 9.27
P. 3.79 3.97 2.23 3.29 2.90 3.36
Temp - F 90.0 92.0 91.8 93.5 96.3 88.0
. m - lbm/sec 2.12 2.33 1.54 1.86 1.89 1.80
(, V - ft/sec 10.2 11.2 7.42 8.94 9.10 8.67
C .0639 .0558 .0853 .0660 .0594 .0760
RE 1503 1693 1116 1373 1486 1236
%
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TABLE XXII.
Data for Concentric Annular Duct, Laminar Flow
Data Set 2
Run Number
1 _2 3 4 5 6
P, - in. Hg 20.64 22.39 25.13 28.38 30.41 31.40
P2 20.16 21.85 24.53 27.65 29.65 30.65
P 19.50 21.16 23.74 26.79 28.65 29.68
Ps 13.88 15.10 16.83 19.00 20.30 21.08
Ps 8.18 8.48 9.44 10.64 11.75 12.30
# Ps 2.87 3.06 3.40 3.80 4.04 4.18
Temp - F 88.0 88.2 88.7 89.2 89.8 88.0
cit m - lbm/sec 1.56 1.70 1.92 2.14 2.31 2.28
V - ft/sec 7.52 8.19 9.25 10.3 11.1 11.0
b .0842 .0775 .0677 .0616 .0569 .0605
RE 1071 1170 1332 1500 1627 1565
) !
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63 3
»
w
i
N ‘,\;_\.}\“.\;.\'__\‘J

e e ot o e T e T e T T T e A e e e A R e e AT N T A AN N
RO R R O N R, G O R A R R N v VN




TABLE XXIII.

Data for Concentric Annular Duct, Transition Flow
Data Set 1 4

Run Number

1 2 3 4 5
P, - in. Hg 34.10 33.30 31.35 30.02 28.85
P. 33.16 32.40 30.45 29.20 28.10
Ps 31.96 31.25 29.38 28.18 27.05 _
P. 23.15 22.50 21.24 20.30 19.50 ;
Ps 13.08 12.56 12.22 11.70 11.28
Ps 4.49 4.38 4.15 3.99 3.85 :
Temp - F 90.0 90.2 92.0 93.0 94.0
éﬁ: m - lbm/sec 2.54 2.49 2.42 2.37 2.33

V - ft/sec 12.2 12.0 11.7 10.8 11.2
o .0538 .0543 .0544 .0606 .0536

RE 1801 1770 1758 1645 1736 '
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TABLE XXIV.
Data for Concentric Annular Duct, Transition Flow
Data Set 2
Run Number
y 1 2 3 4 5
P. - in. Hg 27.95 24.96 34.00 33.20 35.00
Pa 27.20 24.30 33.06 32.30 34.05
P 26.28 23.51 31.96 31.30 33.00
P, 18.20 16.66 22.73 22.20 23.42
Ps 10.70 9.46 13.05 12.90 13.43
Ps 3.70 3.35 4.46 4.40 4.60
X Temp - F 95.0 96.5 90.0 88.3 89.5
d:” m - lbm/sec 2.20 2.08 2.55 2.43 2.60
: V - ft/sec 10.6 10.0 12.3 11.7 12.5
: Cs .0557 .0572 .0523 .0%565 .0518
: RE 1660 1649 1808 1676 1828
65
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Viscosity Comparison

This appendix compares viscosity calculated using the
Hagen-Poiseuille Law verses extrapolated values from Table
VI. The Hagen-Poiseuille Law is used with circular duct
flow data at various temperatures. Table VI values are
extrapolated from two data points using a

Viscosity-Temperature chart.

TABLE XXV.
"‘: Viscosity Comparison

dp/dx ' p- H-P calcs y - Table VI
Re in.Hg/ft ft/sec lbf-sec/ft? lbf-sec/ft?
1132 .0625 2.527 2.500x10"* 2.420x10"-¢
1426 .0770 3.162 2.470 2.510
1574 .0700 3.146 2.254 2.264
1636 .1000 3.817 2.654 2.642
1698 .0700 3.352 2.120 2.240

Since the extrapolated values from Table VI predict
those calculated, using the Hagen-Poiseuille Law, they will
be used in all other calculations, for the sake of

convenience.

66




7, Appendix E.

Hydrodynamic Entrance Length Plots
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Hydrodynamic Entrance Length for Square Duct, Re = 1702.
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Abstract

For laminar, steady flow in dugts, the current
definition of hydraulic diameter, D., does not accurately
depict the non-uniform wall shear stress distribution around
the perimeter of non-circular duct shapes. In this
investigation, a new hydraulic diameter, D.,., was
empirically determined. 1It correlated friction factor data
for many non-circular shapes to within approximately 2.4 %
of the circular duct value.

An experiment, using the AFIT 0i1l Plov ng Set-up, was
run to determine the effect on transitign Reynolds number,

} o Re.,,, and hydrodynamic entrance length, L*, of zeplaclng Da
with Ds,,. Transition Reynolds number and L° were :
determined, based on D. and D.,,, for a circular, square,
and concenttic annular duct.

Transition Reynolds numbers, based on D., for the
square and concentric annular ducts were approximately S
12.5 &% lower than the circular duct Re... The Re,., based e
on Dy, Aid not correlate well for the concentric annulus,
but 4id correlate for the square duct. /- - - -~ = > 7~ S

Hydrodynamic entrance lengths, based on D. and Dw,,
were experimentally determined for the circular and square
duct only. The square duct L°, and the analytic concentric
annular duct L°, based on Da,:, did not correlate to the
circular duct value.

Although the Re., and L* for the square and concentric
annular ducts did not correlate well when based on D.:, the
data obtained is still useful to the engineering community
since it provides an addition data base for experimental L°,
and provides experimental data on Re,, for square and
concentric annular ducts.
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